Optimality Conditions for Minimizers at Infinity in Polynomial Programming

ثبت نشده
چکیده

In this paper we study necessary optimality conditions for the optimization problem infimumf0(x) subject to x ∈ S, where f0 : R → R is a polynomial function and S ⊂ R is a set defined by polynomial inequalities. Assume that the problem is bounded below and has the Mangasarian– Fromovitz property at infinity. We first show that if the problem does not have an optimal solution, then a version at infinity of the Fritz-John optimality conditions holds. From this we derive a version at infinity of the Karush–Kuhn–Tucker optimality conditions. As applications, we obtain a Frank–Wolfe type theorem which states that the optimal solution set of the problem is nonempty provided the objective function f0 is convenient. Finally, in the unconstrained case, we show that the optimal value of the problem is the smallest critical value of some polynomial. All the results are presented in terms of the Newton polyhedra of the polynomials defining the problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Sufficient global optimality conditions for general mixed integer nonlinear programming problems

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are der...

متن کامل

Integrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems

In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...

متن کامل

Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures

‎We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces‎. ‎Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems‎. ‎Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017